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Abstract Compressive sensing can reconstruct compressible or sparse signal at the under-
sampling rate. However small coefficients of the compressible signal with large number
but low energy are hard to be reconstructed, while also infect the accuracy of the big coef-
ficients. In this reason, for the compressive sensing algorithms such as orthogonal match
pursuit (OMP) and tree-structed wavelet compressive sensing (TSW-CS), an assumed error
is in the measurement model, which makes the reconstructed results not satisfy the orig-
inal measurement model. Aiming at this problem, we propose the projection replacement
(PR) algorithm by building the measurement space and its orthogonal complement space
with singular value decomposition, and replacing the projection in measurement space of
the reconstructed result with the pseudo-inverse one. The proposed PR algorithm elimi-
nates the hypothetic measurement error in OMP and TSW-CS reconstructed model, and it
guarantees theoretically that the PR results have a smaller error. Its effectiveness is verified
experimentally with OMP and TSW-CS. The proposed algorithm serves as a good recon-
struction algorithm for the CS-based applications such as image coding, super-resolution,
video retrieval etc.
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1 Introduction

Compressive sensing (CS) is a new theory which can recover a sparse or compressible sig-
nal via a much smaller number of measurements than the dimension of the original signal
[3]. CS reconstruction algorithm has been extensively investigated in the area of multime-
dia information process, such as image coding [2], super-resolution [10], video retrieval
[13] etc. In [2], a Bayesian CS reconstruction method has been applied to multiple descrip-
tion coding (MDC) . Such CS-based MDC enables traffic dispersion and can relive net
congestion [15]. In [4], super-resolution by greedy pursuits CS reconstruction method with
highly coherent partial Fourier measurements is studied. In recent work [11], CS recon-
struction algorithm has been used in 3-D reconstruction by transforming a low resolution
depth map to a high resolution depth map. In [13], video retrieval problem is formulated as
sparse reconstruction, and a Bayesian modeling and inference is utilized to tackle the video
retrieval problem. CS reconstruction algorithm plays an important role in these CS-based
applications.

Candés provides theoretical results that a sparse or compressible signal, with high prob-
ability, can be reconstructed optimally from random projections of this signal [1]. By
acquiring a M × 1 dimensional vector y via linear measurements

y = �θ, (1)

where θ , a M × 1 dimensional vector, represents the coefficients in some transform domain
such as Discrete Wavelet Transform (DWT) or Discrete Cosine Transform (DCT), and �, a
N ×M measurement matrix, models the sampling system, the CS reconstructed algorithms
can get a sparse reconstructed result θ̃ close to the observed original signal θ .

To find the sparse representation solution of a signal which has the fewest nonzero coef-
ficients for (1) is a NP-hard problem. Various methods have been proposed to solve this
problem, such as match pursuits (MP) [12], orthogonal matching pursuit (OMP) [14], tree-
structured Bayesian compressive sensing implemented by variational Bayesian inference
(TS-BCS-VB) [7] and tree-structured wavelet compressive sensing (TSW-CS) [6], which
can be classified into greedy pursuit algorithms and Bayesian based algorithms. OMP and
TSW-CS are the typical CS reconstruction algorithms that we expand in this paper.

Although the proposed algorithms have already achieved great success for sparse sig-
nal, the sparse assumption seems to be somewhat inconsistent with the real world signals,
because most real signals are compressible rather than sparse. In other word, even if after
an change of basis such as DWT, the transform coefficients still contain a large number of
small coefficients. This inconsistent between assumption and reality leads to the problem
that the CS reconstruction algorithms just reconstruct the big coefficients of the original
signal approximately while ignore the small coefficients, which formulates (1) as

y = �θ̃ + e, (2)

where θ̃ represents the reconstructed approximate solution, and e is the measurement error
led by the small coefficients.

One way to decrease e is to make θ sparser by using a more adaptive transform such as
directional lifting wavelet transform (DLWT) [8]. However, this method just decreases the
e, but e still exits in DLWT domain. The other way assumes that e obeys some models. In
greedy pursuit way [12, 14], it assumes K-sparsity in the original signal, and only K largest
coefficients are reconstructed. Small coefficients are regarded directly as part of the noise
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in CS measurement process. In Bayesian way [6, 7, 9], e is modeled by a Gaussian white
noise with small variance.

In this work, we found a way to delimitate the measurement error e in (2). We pro-
pose an orthogonal projection replacement (PR) algorithm. We defined the measurement
space c, and constructed its orthogonal complement space p with singular value decompo-
sition (SVD) [5]. Then, the reconstructed results of the original reconstructed algorithms
are divided into two parts: the orthogonal projection in space c, represented as θ̃c, and the
orthogonal projection in space p, represented as θ̃p . By replacing θ̃c with θc (pseudo-inverse
results [16]) in the original reconstructed result, we get a PR result θ̄ , which satisfies y = �θ̄

and ‖θ − θ̄‖ ≤ ‖θ − θ̃‖. Experimental results show the PR algorithm can improve the per-
formance of OMP and TSW-CS. We also test PR algorithm with the different environmental
noise level, which shows that it still works well in the low environmental noise.

The remainder of the paper is organized as follows. In Section 2, we discuss the measure-
ment error of the compressible signal in the TSW-CS and OMP. In Section 3 we describe the
proposed method, and prove its effectiveness. Example results are presented in Section 4,
with different measurement number and noise level. Conclusions are provided in Section 5.

2 Compressible signal reconstruction

Assuming that the vector θ [c.f. (1)] consists of K significant coefficients and M − K

small coefficients. Then, θ can be decomposed as θ = θK + θe, where θK represents the
K significant coefficients and θe represents the M − K small coefficients [6, 7]. Based on
such decomposition, Eq. 1 can be rewritten as follows,

y = �θK + �θe = �θK + e. (3)

Essentially, reconstruction θ̃ is the approximation of θK at some under-sampling rate, and
θe serves as the interferences to the reconstruction of θK .

TSW-CS is a model-based Bayesian algorithm based on hidden Markov tree (HMT) and
Markov chain Monte Carlo (MCMC) inference [9]. In TSW-CS, each nonzero element of
θe is modeled by a zero-mean Gaussian noise with small variance, which leads to Gaussian
assumption of the measurement error e. In this reason, TSW-CS can not delimitate the
measure error e.

OMP is well-known for its greedy reconstruction, where in each step the dictionary vec-
tor that has the strongest correlation with the residual part of the signal is selected [14].
However, OMP can only reconstruct θK in (3), which means OMP lost small coefficients
θe. In this reason, OMP can not delimitate the measure error e.

3 Projection replace algorithm

The proposed projection replacement algorithm is based on the singular value decom-
position (SVD) of the measurement matrix �. More specifically, we have the following
decomposition,

� = U�V T , (4)
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where U = [u1, u2, · · · , uN ] ∈ RN×N and V = [v1, v2, · · · , vN , vN+1, · · · , vM ] ∈
RM×M . In this section, we aim to construct the measurement space and the corresponding
orthogonal complement space.

Let c = Span{vi}Ni=1 be the measurement space, and p = Span{vi}Mi=N+1 be the
orthogonal complement space, where (vN+1, vN+2, · · · , vM) are the orthogonal basis of
the complement space. Let �⊥ = [vN+1, vN+2, · · · , vM ]T be the matrix forms of space p.
We have that ��T⊥ = 0.

Let θ̃ be the reconstructed vector with the traditional CS algorithm. It can be decomposed
into the following,

θ̃ = θ̃c + θ̃p, (5)

where θ̃c is the orthogonal projection of θ̃ in space c; and θ̃p is the orthogonal projection of
θ̃ in space p. θ̃p can be calculated with

θ̃p = �T⊥�⊥θ̃ . (6)

Similarly , the original θ can also be decomposed into the following two parts:

θ = θc + θp, (7)

where θc and θp are the orthogonal projection onto space c and space p, respectively. Note
that we have the following θc can still be achieved with the pseudo-inverse one , which is
represented as

θc = �T (��T )−1y. (8)

However, θp can not be achieved, because it belongs to the null space of �. In (5), replacing
θ̃c with θc and keeping θ̃p , we can obtain the following PR result θ̄ from θ̃

θ̄ = θc + θ̃p. (9)

From above all, the final result θ̄ is

θ̄ = �T (��T )−1y + �T⊥�⊥θ̃ . (10)

The scheme of the proposed PR algorithm is depicted in Fig. 1. Firstly, a 2-dimensional
sparse transform is applied to nature images. After the measurement, CS reconstructed algo-
rithm is adopted to reconstruct the transform coefficients. Then PR algorithm is used to the

Fig. 1 Scheme of the PR algorithm
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reconstructed results. Finally, reverse 2-dimensional sparse transform is performed to get
the recovery of the original image.

The PR result θ̄ satisfies:

y = �θ̄, (11)

and

‖θ − θ̄‖22 ≤ ‖θ − θ̃‖22. (12)

Substitute (10) into (11), we have the following

�θ̄ = ��T (��T )−1y + ��T⊥�⊥θ̃ = y.

For (12), the error between θ̃ and θ is given by

‖θ − θ̃‖22 = (θ − θ̄ + θ̄ − θ̃ )T (θ − θ̄ + θ̄ − θ̃ )

= ‖θ − θ̄‖22 + ‖θ̄ − θ̃‖22 + (θ − θ̃ )T (θ̄ − θ̃ ) + (θ̄ − θ̃ )T (θ − θ̄ )

= ‖θ − θ̄‖22 + ‖θ̄ − θ̃‖22
+(θc + θp − θc − θ̃p)T (θc + θ̃p − θ̃c − θ̃p)

+(θc + θ̃p − θ̃c − θ̃p)T (θc + θp − θc − θ̃p)

= ‖θ − θ̄‖22 + ‖θ̄ − θ̃‖22 + (θp − θ̃p)T (θc − θ̃c)

+(θc − θ̃c)
T (θp − θ̃p)

= ‖θ − θ̄‖22 + ‖θ̄ − θ̃‖22
It is seen that, given the original reconstructed error ‖θ − θ̃‖22, the reconstructed error ‖θ −
θ̄‖22 decreases with ‖θ̄ − θ̃‖22; and ‖θ − θ̄‖22 ≤ ‖θ − θ̃‖22.

Figure 2 provides an intuitive illustration of the projection relationship between the orig-
inal θ , the reconstructed θ̃ and the PR result θ̄ . Note that ε̃ is the original reconstructed
error between θ̃ and θ , and ε̄ is the replacement error between θ̄ and θ . It is obvious that
‖ε̄‖2 ≤ ‖ε̃‖2, which means that the PR result achieves a smaller reconstructed error.

Fig. 2 The vertical axis
represents the measurement
space c, and the horizontal axis
represents the orthogonal
complement space p
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4 Experimental results

Let OMP-PR and TSW-CS-PR denote PR algorithms formulated in (10) based TSW-
CS (http://people.ee.duke.edu/lcarin/BCS.html) and OMP (http://sparselab.stanford.edu/),
respectively. Biorthogonal 9/7 filter (B9/7) is selected with 3-level wavelet transform and
Gaussian random matrix is used as the measurement matrix. We test the performance
gain of OMP-PR and TSW-CS-PR over baselines OMP and TSW-CS, respectively. To
show the influence of the K-sparsity on the proposed method, we test OMP and OMP-PR
in different K-sparsity levels. At last, we test the PR performance in low environmental
noise.

4.1 Performance of the proposed method in different measurement numbers

We have evaluated the performance of the proposed CS PR algorithm on two differ-
ent datasets, 50 test images from CVG-UGR (http://decsai.ugr.es/cvg/dbimagenes/) and
60 test images from USC-SIPI (http://sipi.usc.edu/database/), with respect to different
measurement numbers. All standard test images are resized to 128 × 128 by Photo-
shop. Nine image classes have been selected: Building, People, Satellite, Military and
Miscellaneous 1 from dataset (http://decsai.ugr.es/cvg/dbimagenes/) and Texture, Aerials,
Sequences and Miscellaneous 2 from dataset (http://sipi.usc.edu/database/). For TSW-CS,
the 3-level Haar wavelet transform is replaced by the 3-level Biorthogonal 9/7 filter(B9/7)
transform and other parameters are set to be default. For OMP, K-sparsity is chosen opti-
mally with the best reconstructed quality. Table 1 shows the average Peak Signal-to-Noise
Ratio (PSNR) of the TSW-CS, OMP and the associated PR results with 6000, 8000,
10000 and 12000 CS measurements in DWT domain and DLWT domain. We found that
the PR algorithm works well for TSW-CS and OMP in both DWT domain and DLWT
domain.

Figure 3 shows the representative images chosen from the classes of Building,
People, Satellite, Military, Miscellaneous 1 for the dataset CVG-UGR, and Texture,
Aerials, Sequence Miscellaneous 2 for the dataset USC-SIPI. The original images
are shown in the first column in Fig. 3, and the reconstructed results from OMP,
OMP-PR, TSW-CS and TSW-CS-PR are shown respectively from the second col-
umn to the fifth column. It is seen that OMP and TSW-CS algorithms incur
some blurring effects, while OMP-PR and TSW-CS-PR algorithms present more
details.

4.2 Performance of the OMP-PR with different K-sparse level

From Fig. 2 it is seen that the improvement of the PR algorithm relies on the relative dis-
tribution of θ and θ̃ in space c and space p. To show this intuitively, we further show the
reconstructed θ̃ and the PR result θ̄ in Fig. 4a, with respect to relative error. In Fig. 4b, as
the K-sparsity increases, the reconstructed error in space c always decreases, and thus the
improvement of OMP-PR over the OMP decreases. From Fig. 4a we can also see that the
reconstructed error in space p decreases and then increases after a turning point, which cor-
responds to the K-sparsity 1800. This means that the optimal performance of the OMP-PR
is achieved for the K-sparsity 1800 since the error of OMP-PR is only limited in space p,
while the optimal performance of OMP is achieved via minimizing the error in space c and
space p jointly, at the K-sparsity 2400. Note that OMP-PR and OMP achieve the optimal
performance for different K-sparsity. Similar results are observed for other images.

http://people.ee.duke.edu/ lcarin/BCS.html
http://sparselab.stanford.edu/
http://decsai.ugr.es/cvg/dbimagenes/
http://sipi.usc.edu/database/
http://decsai.ugr.es/cvg/dbimagenes/
http://sipi.usc.edu/database/
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Building 22.05 dB 23.49 dB 25.49 dB 26.02 dB

People 25.20 dB 26.39 dB 28.57 dB 29.04 dB

Satellite 25.59 dB 27.71 dB 28.08 dB 28.80 dB

Military 24.51 dB 26.28 dB 27.60 dB 28.33 dB

Miscellaneous1 22.93 dB 23.73 dB 27.43 dB 27.77 dB

Texture 19.88 dB 21.21 dB 23.01 dB 23.68 dB

Aerials 22.93 dB 24.08 dB 26.17 dB 26.73 dB

Sequence 33.37 dB 34.02 dB 37.02 dB 37.41 dB

Miscellaneous2 23.22 dB 24.82 dB 25.82 dB 26.52 dB

Fig. 3 Nine images are respectively from Buildings, People, Satellite, Military, Miscellaneous 1, Texture,
Aerials, Sequence and Miscellaneous 2. The original images and reconstructed results by OMP, OMP-PR,
TSW-CS and TSW-CS-PR algorithms in DWT domain with 6000 measurement number are respectively
shown from left to right
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a b

Fig. 4 OMP and OMP-PR reconstructed results for 128 × 128 Lena from K-sparsity 600 to 3800 at 0.5
sampling rate. K-sparsity step between two star-points is 200: (a) relative reconstructed error is in space c

and space p, formulated as ‖θc−θ̃c‖2‖θ‖2 and ‖θp−θ̃p‖2
‖θ‖2 respectively; (b) reconstructed PSNR for the corresponding

K-sparsity

4.3 Performance in low environmental noise

Suppose there exits environmental noise in the measurement process, i.e., that (1) turns
to y = �θ + n, where n obeys white Gaussian distribution N(0, σ 2), where σ shows the

Table 2 Results with different level noise in DWT domain (dB)

Images Algorithms Noise Level (σ )

0.018 0.01 0.006 0.003

CVG-UGR Boat OMP 24.49 24.61 24.63 24.61

(http://decsai.ugr.es/cvg/dbimagenes/) OMP-PR 25.88 26.17 26.25 26.25

TSW-CS 28.34 28.78 28.89 29.04

TSW-CS-PR 28.63 29.25 29.43 29.53

Building OMP 24.51 24.68 24.77 24.74

OMP-PR 25.82 26.19 26.34 26.32

TSW-CS 28.46 29.07 29.16 29.36

TSW-CS-PR 28.65 29.41 29.54 29.78

Lena OMP 24.79 24.98 24.99 25.02

OMP-PR 26.21 26.66 26.65 26.73

TSW-CS 29.27 29.93 30.19 30.25

TSW-CS-PR 29.39 30.23 30.58 30.65

Peppers OMP 24.36 24.28 24.30 24.47

OMP-PR 25.86 25.92 26.00 26.22

TSW-CS 29.42 30.24 30.45 30.50

TSW-CS-PR 29.49 30.50 30.79 30.87

http://decsai.ugr.es/cvg/dbimagenes/
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Table 2 (continued)

Images Algorithms Noise Level (σ )

0.018 0.01 0.006 0.003

Scenery OMP 21.66 21.73 21.85 21.88

OMP-PR 23.10 23.25 23.42 23.47

TSW-CS 25.49 25.81 25.79 26.02

TSW-CS-PR 25.93 26.32 26.31 26.54

USC-SIPI Texture OMP 20.81 20.74 20.80 20.87

(http://sipi.usc.edu/database/) OMP-PR 22.71 22.86 22.90 22.91

TSW-CS 24.59 24.71 24.74 24.78

TSW-CS-PR 25.27 25.45 25.53 25.55

Aerial OMP 24.13 24.51 24.54 24.54

OMP-PR 25.69 25.86 25.96 25.95

TSW-CS 27.66 27.92 28.06 28.08

TSW-CS-PR 28.00 28.40 28.57 28.60

Sequence OMP 33.18 34.83 35.91 35.98

OMP-PR 33.32 35.53 36.67 36.87

TSW-CS 35.94 38.09 39.37 40.20

TSW-CS-PR 34.81 37.80 39.53 40.65

Miscellaneous OMP 24.15 24.26 24.25 24.26

OMP-PR 26.01 26.20 26.31 26.29

TSW-CS 26.99 27.13 27.18 27.30

TSW-CS-PR 27.53 27.78 27.90 28.02

environmental noise level. Nine images from CVG-UGR (http://decsai.ugr.es/cvg/
dbimagenes/) and USC-SPI (http://sipi.usc.edu/database/) have been tested at 8000 mea-
surement number in different noise level, as shown in Table 2. It is seen that the PR
algorithm still performs well in low environmental noise.

5 Conclusions

In this work, we have proposed a CS improvement algorithm for compressible signal based
on projection replacement. We construct the measurement space and its orthogonal com-
plementary space, and decompose the traditional CS reconstruction into two parts, in the
measurement space and in the orthogonal complementary space, where the part in mea-
surement space is replaced with its pseudo-inverse. In this way, the reconstruction error is
limited in the orthogonal complement space. Experimental results show the performance
improvements of the PR algorithm. We have also shown that the PR algorithm works
well in low environmental noise. The proposed method serves as an efficient reconstruc-
tion algorithm for CS-based applications such as image coding, super-resolution, video
retrieval etc.

http://sipi.usc.edu/database/
http://decsai.ugr.es/cvg/dbimagenes/
http://decsai.ugr.es/cvg/dbimagenes/
http://sipi.usc.edu/database/
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